
Chapter 8

LONGITUDINAL

COUPLED-BUNCH

INSTABILITIES

When the wake does not decay within the bunch spacing, bunches talk to each other.

Assuming M bunches of equal intensity equally spaced in the ring, there are µ =

0, 1, · · · , M−1 modes of oscillations in which the center-of-mass of a bunch leads∗ its

predecessor by the phase 2πµ/M . In addition, an individual bunch in the µ-th coupled-

bunch mode can oscillate in the synchrotron phase space about its center-of-mass in

such a away that there are m = 1, 2, · · · azimuthal nodes in the perturbed longitudinal

phase-space distribution. Of course, there will be in addition radial modes of oscillation

in the perturbed distribution. The long-range wake can drive the coupled bunches to

instability.

8.1 SACHERER INTEGRAL EQUATION

Because the beam particles execute synchrotron oscillations, it is more convenient to use

circular coordinates r, φ in the longitudinal phase space instead. We define x = r cosφ = τ ,

px = r sinφ =
η

ωsβ2

∆E

E0
,

(8.1)

∗We can also formulate the problem by having the bunch lag its predecessor by the phase 2πµ′/M
in the µ′-th coupling mode. Then mode µ′ will be exactly the same as mode M−µ discussed in the
text.
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so that the equations of motion become
dx

ds
=−ωs

v
px ,

dpx
ds

=
ωs
v
x+

η

E0ωsβ2
〈F ‖0 (τ ; s)〉 .

(8.2)

The phase-space distribution ψ of a bunch can be separated into the unperturbed or

stationary part ψ0 and the perturbed part ψ1:

ψ(τ,∆E; s) = ψ0(τ,∆E) + ψ1(τ,∆E; s) . (8.3)

The linearized Vlasov equation becomes

∂ψ1

∂s
− ωs

v
px
∂ψ1

∂x
+
ωs
v
x
∂ψ1

∂px
+
∂ψ0

∂px

η

E0ωsβ2
〈F ‖0 (τ ; s)〉 = 0 . (8.4)

Changing to the circular coordinates, the equation simplifies to

∂ψ1

∂s
+
ωs
v

∂ψ1

∂φ
+

η

E0ωsβ2

dψ0

dr
sinφ〈F ‖0 (τ ; s)〉 = 0 . (8.5)

The perturbed distribution can be expanded azimuthally,

ψ1(r, φ; s) =
∑
m

αmRm(r)eimφ−iΩs/v , (8.6)

where Rm(r) are functions corresponding to the m-th azimuthal, αm are the expan-

sion coefficients, and Ω/(2π) is the collective frequency to be determined. The Vlasov

equation becomes

(Ω−mωs)αmRm(r)e−iΩs/v = − ivη

E0ωsβ2

dψ0

dr

∫ π

−π

dφ

2π
e−imφ sin φ 〈F ‖0 (τ ; s)〉 . (8.7)

Now consider the wake force acting on a beam particle at location s with time

advance τ relative to the synchronous particle due to all preceding particles passing

through s at an earlier time. This force can be expressed as

〈F ‖0 (τ ; s)〉 = −e
2

C

∞∑
k=−∞

∫ ∞
−∞

dτ ′ρ1[τ ′, s− kC − v(τ ′−τ )]W ′
0[kC + v(τ ′−τ )] , (8.8)

where only the perturbed density ρ1, which is the projection of ψ1 onto the τ axis, is

included, because the unperturbed part should have been considered in the zeroth order
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of the Vlasov equation during the discussion of potential-well distortion. The summation

over k takes care of the contribution of the wake left by the charge distribution in previous

turns. The lower limit of the summation and the lower limit of the integral have been

extended to −∞ because of the causality property of the wake function. Now there

are M bunches and the synchronous particle in the `-th bunch is at location s`. If the

witness particle is in the n-th bunch,

〈F ‖0n(τ ; s)〉=−e
2

C

∞∑
k=−∞

M−1∑
`=0

∫ ∞
−∞
dτ ′ρ`[τ

′; s−kC−(s −̀sn)−v(τ ′−τ )]W ′
0[kC+(s −̀sn)+v(τ ′−τ )] .

(8.9)

We assume the bunches are identical and equally spaced. For the µ-th coupled mode, we

substitute in the above expression the perturbed density of the n-th bunch ρ1n(τ )e−iΩs/v

including the phase lead,

ρ`(τ ; s) = ρ1n(τ )ei2πµ(`−n)/Me−iΩs/v . (8.10)

Now go to the frequency domain using the Fourier transforms

W ′
0(vτ ) =

1

2π

∫ ∞
−∞

dω Z
‖
0 (ω)e−iωτ , (8.11)

ρ1n(τ ; s) =

∫ ∞
−∞

dω ρ̃1n(ω)eiωτ . (8.12)

In Eq. (8.9) above, we shall neglect† the time delay τ ′−τ because this will only

amount to a phase delay Ω(τ ′−τ ) where Ω ≈ mωs, which is very much less than the

phase change ωr(τ ′−τ ) during the bunch passage, where ωr/(2π) is the frequency of

the driving resonant impedance. Substituting Eqs. (8.11) and (8.12) into Eq. (8.9) and

integrating over τ ′ and one of the ω’s, the wake force for the µ-th coupled-bunch mode

becomes

〈F ‖0nµ(τ ; s)〉 = −e
2

C

∞∑
k=−∞

M−1∑
`=0

ei2πµ(`−n)/MeiΩ(−s+kC+s`−sn)/v×

×
∫ ∞
−∞
dωρ̃1n(ω)Z‖0(ω)e−iω(kC+s`−sn)/veiωτ . (8.13)

†Without this approximation, only Z‖0 will have the argument ωq in Eq. (8.16) below. The argument
of ρ̃ and the factor in front of τ in the exponent will be replaced by ωq−Ω.
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Now the summation over k can be performed giving

〈F ‖0nµ(τ ; s)〉 = −e
2

C

∞∑
p=−∞

M−1∑
`=0

ei2πµ(`−n)/Me−iΩs/v+iωpτω0ρ̃1n(ωp)Z
‖
0 (ωp)e

−ipω0(s`−sn)/v ,

(8.14)

where ωp = pω0 + Ω. We next make use of the fact that the unperturbed bunches are

equally spaced, or

s` − sn =
`− n
M

C . (8.15)

Then the summation over ` can be performed. The sum vanishes unless (p−µ)/M = q,

where q is an integer. The final result is

〈F ‖0nµ(τ ; s)〉 = −e
2Mω0

C
e−iΩs/v

∞∑
q=−∞

ρ̃1n(ωq)Z
‖
0 (ωq)e

iωqτ , (8.16)

where ωq = (qM+µ)ω0 + Ω.

Since the left side of the Vlasov equation is expressed in terms of the radial function

Rm(r), we want to do the same for the wake force. First, rewrite the perturbed density

in the time domain,

〈F ‖0nµ(τ ; s)〉 = −e
2Mω0

C
e−iΩs/v

∞∑
q=−∞

Z
‖
0(ωq)

∫
dτ ′

2π
ρ1n(τ ′)eiωq(τ−τ

′) . (8.17)

Since ρ1(τ ′) is the projection of the perturbed distribution onto the τ ′ axis, we must

have

ρ1n(τ ′)dτ ′ =

∫
ψ1n(τ

′,∆E′)dτ ′d∆E′ (8.18)

=
E0ωsβ2

η

∫
ψ1n(r′, φ′)r′dr′dφ′ (8.19)

=
E0ωsβ2

η

∑
m′

αm′

∫
Rm′(r

′)eim
′φ′r′dr′dφ′ . (8.20)

The wake force then takes the form

〈F ‖0n(τ ; s)〉 = −e
2ω0M

2πC

E0ωsβ2

η
e−iΩs/v

∞∑
q=−∞

∑
m′

Z‖0 (ωq)

∫
r′dr′dφ′αm′Rm′(r

′)eim
′φ′eiωq(τ−τ

′) ,

(8.21)
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This wake force is next substituted into the Vlasov equation (8.7). The integrations

over φ and φ′ are performed in terms of Bessel function of order m using its integral

definition

imJm(z) =
1

2π

∫ π

−π
dφ e±imφ+iz cosφ , (8.22)

the recurrence relation

Jm−1(z) + Jm+1(z) =
2m

z
Jm(z) , (8.23)

and the fact that

Jm(−z) = (−1)mJm(z) . (8.24)

The result is the Sacherer integral equation for longitudinal instability for the m-th

azimuthal µ-th coupled-bunch mode,

(Ω−mωs)αmRm(r) =

− i2πe
2MNη

β2E0T 2
0ωs

m

r

dg0

dr

∑
m′

im−m
′
αm′

∫
r′dr′Rm′(r

′)
∑
q

Z‖0 (ωq)

ωq
Jm′(ωqr

′)Jm(ωqr) ,(8.25)

where transformation of the unperturbed longitudinal distribution

ψ0(r)dτd∆E =
ωsβ2E0

η
ψ0dxdpx = Ng0(r)rdrdφ (8.26)

has been made so that g0 is normalized to unity when integrated over rdrdφ.

This is an eigen-function-eigen-value problem, the αm’s being the eigen-functions

and Ω the corresponding eigen-value. The solution is nontrivial. However, with some

approximations, interesting results can be deduced. When the perturbation is not too

strong so that the shift in frequency is much less than the synchrotron frequency, there

will not be coupling between different azimuthals. The integral equation simplifies to

(Ω−mωs)Rm(r) = − i2πe
2MNη

β2E0T 2
0ωs

m

r

dg0

dr

∫
r′dr′Rm(r′)

∑
q

Z
‖
0 (ωq)

ωq
Jm(ωqr

′)Jm(ωqr) .

(8.27)

The spread in synchrotron frequency can be introduced by letting ωs be a function of

r. Moving the factor Ω −mωs(r) to the right side, the radial distribution Rm can be

eliminated by multiplying both sides by rJm(r) and integrating over dr. We then arrive

at the dispersion relation,

1 = − i2πe
2MNmη

β2E0T 2
0ωs

∑
q

Z
‖
0 (ωq)

ωq

∫
dr
dg0

dr

J2
m(ωqr)

Ω−mωs(r)
. (8.28)
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Stability and growth contours can be derived from the dispersion relation of Eq. (8.28)

in just the same way as in the discussion of microwave instability for a single bunch.

8.1.1 WATER BAG MODEL

When the spread in synchrotron frequency is small, Eq. (8.28) gives the frequency

shift

Ω−mωs =
i2πe2MNmη

β2E0T 2
0ωs

∑
q

Z‖0 (ωq)

ωq

[
−
∫
dr
dg0

dr
J2
m(ωqr)

]
, (8.29)

where the expression inside the square brackets can be viewed as a distribution dependent

form factor, which is positive definite because dg0/dr is negative. Take the simple case

of a single bunch of length 2τ̂ and uniform distribution in the longitudinal phase space,

which is usually called the water bag model. Then

g0(r) =
1

πτ̂ 2
H(τ̂ − r) , (8.30)

where the Heaviside function is defined as H(x) = 1 when x > 0 and zero otherwise.

The form factor becomes

F =
1

πτ̂ 2
J2
m(ωq τ̂ ) ≈

ω2
q

4π

1

(m!)2

(
ωq τ̂

2

)2m−2

, (8.31)

where the assumption of a short bunch has been made in the last step. The growth rate

driven by the impedance can now be written as

1

τm
=

e2Nη

2β2E0T 2
0ωs

m

(m!)2

∑
q

(
ωq τ̂

2

)2m−2

ωqReZ‖0 (ωq) , (8.32)

where, for one bunch, ωq = qω0 + Ω.

8.1.2 ROBINSON INSTABILITY

The m= 0 mode is a trivial mode which gives Ω0 = 0. It describes the potential-

well distortion mode addressed in Chapter 4 and is of not much interest here where

the emphasis is on instabilities. The next azimuthal mode is m = 1 which describes

dipole oscillations and we expect Ω ≈ ωs. Consider the situation of having the driving

impedance as a resonance so narrow that there is only one q > 0 that satisfies

ωr ≈ qω0 ± ωs , (8.33)
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Figure 8.1: (a) Above transition, if the resonant frequency ωr is slightly above a
revolution harmonic qω0, ReZ‖0 at the upper synchrotron side-band is larger than
at the lower synchrotron side-band. The system is unstable. (b) Above transition,
if ωr is slightly below a harmonic line, ReZ‖0 at the upper side-band is smaller than
at the lower side-band, and the system is stable.

where ωr/(2π) is the resonant frequency. The growth rate can therefore be expressed as

1

τ1
= Im∆ωs =

ηe2Nωr
2β2E0T 2

0ωs
[ReZ‖0 (qω0+ωs)−ReZ‖0 (qω0−ωs)] , (8.34)

where the first term corresponds to positive frequency and the second negative frequency.

If the resonant frequency is slightly above qω0 as illustrated in Fig. 8.1(a), we have

ReZ‖0 (qω0 + ωs) > ReZ‖0 (qω0 − ωs). Above transition, the growth rate will be positive

or there is instability. On the other hand if ωr < qω0 as illustrated in Fig. 8.1(b), the

growth rate is negative and the system is damped. This instability criterion was first

analyzed by Robinson [1]. Note that the growth rate of Eq. (8.34) is independent of

the bunch length when the bunch is short, implying that for the dipole mode, this is a

point-bunch theory. More about Robinson stability criterion was discussed in Chapter 7.

For M equal bunches, Eq. (8.34) becomes, for coupled-bunch mode µ,

1

τ1µ
=

ηe2NMωr
2β2E0T 2

0ωs
[ReZ‖0 (qMω0+µω0+ωs)−ReZ‖0 (q′Mω0−µω0−ωs)] . (8.35)
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Figure 8.2: Top plot shows the synchrotron lines for both positive and negative
revolution harmonics for the situation of M = 6 identical equally-spaced bunches.
The coupled-bunch modes µ = 0, 1, 2, 3, 4, 5 are listed at the top of the synchrotron
lines. Lower plot shows the negative-harmonic side folded onto the positive-harmonic
side. We see upper and lower side-band for each harmonic line.

When µ = 0, both terms will contribute with q′ = q and we have exactly the same

Robinson’s stability or instability as for the single bunch situation. This is illustrated in

Fig. 8.2. When µ = M/2 if M is even, both terms will contribute with q′ = q, and the

same Robinson’s stability or instability will apply. For the other M−2 modes, only one

term will be at or close to the resonant frequency and only one term will contribute. If

the positive-frequency term contributes, we have instability. If the negative-frequency

term contributes, we have damping instead. If one choose to speak in the language

of only positive frequencies, there will be an upper and lower synchrotron side-band

surrounding each revolution harmonic. Above transition, the coupled-bunch system will

be unstable if the driving resonance leans towards the upper side-band and stable if it

leans towards the lower side-band.

For the higher azimuthal modes (m > 1) driven by a narrow resonance, we have the

same Robinson instability. The growth rates are

1

τmµ
=

ηe2NMωr
2β2E0T 2

0ωs

m

(m!)2

(
ωrτ̂

2

)2m−2

[ReZ‖0 (qMω0+µω0+ωs)−ReZ‖0 (q′Mω0−µω0−ωs)] ,

(8.36)

which depend on the bunch length as τ̂ 2m−2. As a result, higher azimuthal instabilities

for short bunches will be much more difficult to excite.

Landau damping can come from the spread of the synchrotron frequency. The
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Figure 8.3: Synchrotron frequency spread S as a function of single-bucket bunch-
ing factor B ≈ τLf0 for various values of Γ = sinφs. τL is full bunch length, f0

is revolution frequency, φs is synchronous angle, and ωs0 is unperturbed angular
synchrotron frequency.

spread due to the nonlinear sinusoidal rf wave form can be written as (Exercise 8.3)

∆ωs
ωs

=

(
π2

16

)(
1 + sin2 φs
1− sin2 φs

)
(hτLf0)2 , (8.37)

where τL is the total length of the bunch and φs is the synchronous angle, and is valid

for small amplitudes. The mode will be stable if [2]

1

τ
.

√
m

4
∆ωs . (8.38)

When the synchronous angle φs 6= 0, the computation of synchrotron frequency spread is

tedious. A numerical calculation is shown in Fig. 8.3 for various Γ = sinφs. The expres-

sion in Eq. (8.37) comes from a fitting to the numerical calculation at small amplitudes.

8.2 TIME DOMAIN

The longitudinal coupled-bunch instabilities can also be studied without going into

the frequency domain. We are employing the same Vlasov equation in Eq. (8.7), but

using the wake function of a resonance in the time domain [2].
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The wake function for a resonance with resonant frequency ωr/(2π), shunt impe-

dance Rs and quality factor Q was given in Eq. (1.40). For a narrow resonance with

α = ωr/(2Q)� ωr, we can neglect the sine term‡ and simplify the wake function to

W ′
0(z) =

ωrRs

Q
e−αz/v cos

ωrz

v
when z > 0 . (8.39)

The wake force is then given by

〈F ‖0 (τ ; s)〉 = −e
2ωrRs

QC

∫ ∞
τ

dτ ′ e−α(τ ′−τ ) cos[ωr(τ
′−τ )] ρ [τ ′; s− v(τ ′−τ )] . (8.40)

Now let ρ(τ ; s) represent the line density of the individual bunch, which has a phase

lead of 2πµ/M for mode µ compared with the preceding bunch τsep = T0/M ahead, and

is influenced by all the preceding bunches. The location argument s of ρ in Eq. (8.40)

becomes§ s − kτsep − v(τ ′−τ ), with k = 0, 1, 2, · · · . For simplicity, we neglect the

time delay τ ′−τ . In the time variation e−iΩs/v where Ω ≈ mωs, this delay causes a

phase delay Ω(τ ′−τ ) which is negligible in comparison with the phase change due to the

resonator. We will also neglect the variation in the attenuation factor over one bunch

in e−α(τ ′−τ ). Then the wake force exerted on a particle in the µ-th coupled-bunch mode

can be written as

〈F ‖0µ(τ ; s)〉=−e
2ωrRs

QC

∞∑
k=0

e2πikµ/M−kατsep

∫
one bunch

dτ ′ cos[ωr(τ
′−τ+kτsep)] ρ1(τ

′)e−iΩ(s/v−kτsep) .

(8.41)

It is worth pointing out that the lower limits of the summation and integration cannot

be extended to −∞ as before, because the explicit expression of the wake function has

been used. Note that only the perturbed line density ρ1 is included. This is because

the unperturbed part ρ0 should have been taken care of in the potential-well distortion

consideration. Changing the integration variables from (τ,∆E) to (r, φ) while keeping

only the azimuthal m,

ρ1(τ ′)dτ ′ = αmRm(r′)eimφ
′
dτ ′d∆E′ =

E0ωsβ
2

η
αmRm(r′)eimφ

′
r′dr′dφ′ . (8.42)

‡The sine term can be included at the expense of a slightly more complicated derivation.
§Here we include the term kτsep which Sacherer had left out. This term is important to exhibit

Robinson’s criterion of phase stability.
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Substituting the wake force into Eq. (8.7), we arrive at

(Ω−mωs)Rm(r) =
ie2NηωrRs

2πβ2E0QT0ωs

dg0

dr

∞∑
k=0

e2πikµ/M−k(α−iΩ)τsep×

×
∫ ∞

0

r′dr′Rm(r′)

∫ π

−π
dφ e−imφ sinφ

∫ π

−π
dφ′eimφ

′
cos[ωr(r

′ cosφ′−r cosφ+kτsep)] ,(8.43)

where again we have used the unperturbed distribution g0(r) given by Eq.(8.26) which

is normalized to unity. The result is

(Ω−mωs)Rm(r) = −2πe2NRsmη

β2E0QT0ωs

dg0

dr
×

×
∞∑
k=0

e2πikµ/M−k(α−iΩ)τsep sin(kωrτsep)

∫ ∞
0

dr′Rm(r′)
r′Jm(ωrr′)Jm(ωrr)

r
. (8.44)

Finally, we introduce Landau damping by allowing the synchrotron frequency to be a

function of the radial distance from the center of the bunch in the longitudinal phase

phase. Moving Ω−mωs(r) to the right side and performing an integration over rdr, we

can eliminate Rm and obtain the dispersion relation

1 = − i2πe
2MNmηRs

β2E0T 2
0ωsωr

D(ατsep)

∫ ∞
0

dr
dg0

dr

J2
m(ωrr)

Ω−mωs(r)
, (8.45)

where we have defined the function¶

D(ατsep) = −i2ατsep

∞∑
k=0

e2πikµ/M−k(α−iΩ)τsep sin kωrτsep , (8.46)

which contains all the information about the quality factor of the resonance and its

location with respect to the revolution harmonics. It is interesting to note that Eq. (8.45)

closely resembles Eq. (8.28). It will be shown below that D = 1 for a narrow resonance

with the resonant peak located at (qM+µ)ω0 +mωs. Thus the two dispersion relations

are identical. In fact, they are the same even when the resonant peak is not exactly

located at a synchrotron line.

Now let us study the function D(ατsep). Noting that the bunch separation is τsep =

T0/M , this function can be rewritten as

D(ατsep) = ατsep

(
1

1−ex+
− 1

1−ex−

)
, (8.47)

¶We would like D = ±1 when the resonance is at the upper/lower side-band. As a result, our
definition of D differs from Sacherer’s by a phase.
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where

x± =
2πi

M

(
q±M + µ +m

ωs
ω0
∓ ωr
ω0

)
− ατsep . (8.48)

The q±M term comes about because we can replace µ in Eq. (8.46) by q±M+µ, where

q± are positive/negative integers and µ = 0, 1, · · · , M−1. When the resonance is

extremely narrow, we have ατsep = ωrτsep/(2Q) � 1. The two terms in Eq. (8.47)

almost cancel each other so that D(ατsep) ≈ 0 unless ωr ≈ (|q±|M±µ)ω0. For modes

µ 6= 0 and µ 6= 1
2
M if M is even, only one of the two terms in Eq. (8.47) contributes. If

ωr ≈ (|q±|M±µ)ω0±mωs, we have |x+| � 1 or |x−| � 1 and

D(ατsep) ≈ ∓ατsep

x±
=

−iωr/(2Q)

ωr − [(|q±|M±µ)ω0±mωs]∓ iωr/(2Q)
≈ ±1 . (8.49)

When µ = 0 or µ = M/2 if M is even, it is possible to choose q+ and q− so that both

terms will contribute. We have

D ≈ −iωr/(2Q)

ωr − [(q+M+µ)ω0+mωs]− iωr/(2Q)
+

−iωr/(2Q)

ωr − [(|q−|M−µ)ω0−mωs] + iωr/(2Q)
,

(8.50)

where q+ = |q−| for µ = 0 and |q−| = q++1 for µ = M/2. Note that Eq. (8.50) is just

proportional to [Z
‖
0(q+Mω0 +µω0 +mωs+iα) − Z‖0 (|q−|Mω0−µω0−mωs−iα)], and we

recover the Robinson’s stability criterion derived in Eq. (8.35).

On the other hand, when the resonance is broad, ατsep � 1. The k = 1 in Eq. (8.46)

dominates since k = 0 does not contribute and we have instead

D(ατsep) ≈ −i2ατsep sin(ωrτsep)e2πiµ/M−ατsep . (8.51)

Therefore coupled-bunch modes near µ = ±1
4
M are most strongly excited, although

|D| will be much less than unity. Figure 8.4 plots |D| versus ωr/ω0 for the situation

of M = 10 bunches. The solid lines show |D| ≈ 1 for narrow resonance. The dotted

curve are for broad-band resonance when the bunch to bunch attenuation decrement is

ατsep = 4; the values of |D| are small and appear to be mode-independent. The dashed

curves correspond the intermediate case with bunch-to-bunch attenuation decrement

ατsep = 1. From left to right, they are for modes µ = 0, 1 and 9, 2 and 8, 3 and

7, 4 and 6, 5. We see that |D|max is roughly the same for each mode. Note that

ατsep = 1 translates into (∆ωr/ω0)FWHM = M/π = 3.2 or the resonance covers more

than 3 revolution harmonics. It is demonstrated in the figure that all modes will not

be excited if the ωr/ω0 falls exactly on qM or q(1
2
M) if M is even. This is because
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Figure 8.4: |D| as functions of resonant harmonic ωr/ω0 for M = 10 bunches
when bunch-to-bunch decay decrement ατsep � 1 for narrow-band resonance (solid),
ατsep = 4 for broad-band resonance (dots), and ατsep = 1 for resonance in between
(dashes). The dashed curves from left to right represent coupled-bunch modes µ = 0,
1 and 9, 2 and 8, 3 and 7, 4 and 6, 5. The excitations at ωr/ω0 = 0, or M/2 is
always zero, because we have set the synchrotron frequency to zero in the plot.

in drawing the plot, the limit ωs → 0 has been taken. Figure 8.5 plots |D|max versus

the bunch-to-bunch decrement ατsep, showing that it is less than 5% from unity when

ατsep < 0.55.

In the event that the spread in synchrotron frequency is small, we can obtain from

Eq. (8.45) the synchrotron frequency shift

Ω−mωs = − i2πe
2NRsmMη

β2E0ωsωrT 2
0

D(ατsep)

∫ ∞
0

dr
dg0

dr
J2
m(ωrr) , (8.52)

where the integral can be viewed as a form factor which is distribution dependent. A

dimensionless form factor

Fm(∆φ) = −4πmτ̂

ωr

∫ ∞
0

dr
dg0

dr
J2
m(ωrr) (8.53)

can now be defined for each azimuthal, where τ̂ is the half bunch length and ∆φ = 2ωrτ̂

is the change in phase of the resonator during the passage of the whole bunch. Then

the frequency shift can be rewritten as

Ω−mωs =
iηe2NMRs

4πβ2E0νsT0τ̂
D(ατ0)Fm(∆φ) , (8.54)
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Figure 8.5: |D|max as a function of bunch-to-bunch decay decrement ατsep. Note
that |D|max ≈ 1 for narrow resonances but drops very rapidly as the resonance
becomes broader.

where νs = ωs/ω0 is the synchrotron tune.

We take as an example the parabolic distribution in the longitudinal phase space,‖

which implies

g0(r) =
2

πτ̂ 4
(τ̂ 2 − r2) and

dg0

dr
= − 4r

πτ̂ 4
. (8.55)

The form factor is

Fm(∆φ) =
32m

∆φ

∫ 1

0

J2
m(1

2
∆φx)xdx

=
16m

∆φ

[
J2
m(1

2
∆φ)− Jm+1(1

2
∆φ)Jm−1(1

2
∆φ)

]
,

(8.56)

which is plotted in Fig. 8.6 for m = 1 to 6. The form factor specifies the efficiency

with which the resonator can drive a given mode. We see that the maximum value of

F1 for the dipole mode occurs when ∆φ ≈ π. This is to be expected because the head

and tail of the bunch will be driven in opposite directions. Similarly, the quadrupole

or breathing mode is most efficiently driven when ∆φ ≈ 2π, and so on for the higher

modes. In general, mode m is most efficiently driven when the resonator frequency is

∆φ ≈ mπ. Note also that the maximum value of Fm drops faster than m−1/2, implying

that higher azimuthal modes are harder to excite. For distributions other than the

‖This is different from the so-called parabolic distribution, which is actually parabolic line density.
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Figure 8.6: Sacherer form factor for longitudinal oscillation inside a bunch with
azimuthal modes m = 1, 2, 3, 4, 5 and 6. The unperturbed parabolic distribution
in the longitudinal phase space is assumed.

“parabolic” of Eq. (8.55), we expect form factors to have similar properties. However, a

shorter bunch does not necessarily imply a slower growth especially for the m = 1 mode,

although the excitation in the form factor Fm(∆φ) is small. According to Eq. (8.54),

the growth rate is obtained from multiplying the form factor Fm(∆φ) with eN/τ̂ , the

local linear charge density or peak current. In fact, with a fixed number of particles in

the bunch, as the bunch length is shortened, the local linear charge density increases,

thus enhancing the growth rate. As a result, a more practical form factor should be

F̄m(∆φ) = 2Fm(∆φ)/∆φ as plotted in Fig. 8.7 in logarithmic scale. It is clear that for

small ∆φ, F1 ≈ 1
2
∆φ and F̄1 ≈ 1. From Eq. (8.52), the growth rate for the dipole mode

above transition can be written as

ηe2NMRsωr
2β2E0ωsT 2

0

, (8.57)

which agrees with the expression in Eq. (8.35) derived for short bunches. It is also

evident from Fig. 8.7 that the excitations of higher azimuthal modes will be very much

smaller.
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Figure 8.7: A more useful form factor F̄ (∆φ) in logarithmic scale for longitudinal
oscillation inside a bunch with azimuthal modes m = 1, 2, 3, 4, 5 and 6. The
unperturbed parabolic distribution in the longitudinal phase space is assumed. It is
related to the Sacherer’s form factor of Fig. 8.6 by F̄ (∆φ) = 2F (∆φ)/∆φ.

8.3 OBSERVATION AND CURES

The easiest way to observe longitudinal coupled-bunch instability is in mountain-

range plot, where bunches oscillate in a particular pattern as time advances. Examples

are shown in Figs. 8.8 and 8.9. Streak camera can also be used to capture the phases of

adjacent bunches as a function of time. From the pattern of coupling, the coupled-mode

µ can be determined. From the frequency of oscillation, the azimuthal mode m can also

be determined. Then we can pin down the frequency ωr/(2π) of the offending resonance

driving the instability.

Observation can also be made in the frequency domain by zooming in the region

between two rf harmonics in the way illustrated in Fig. 8.2. The coupled-bunch mode

excited will be shown as a strong spectral line in between.

Longitudinal coupled-bunch instability will lead to an increase in bunch length and

an increase in energy spread. For a light source, this translates into an increase in the

spot size of the synchrotron light.
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Figure 8.8: (color) Mountain-range plot showing coupled-bunch instability in the
Fermilab Main Injector just after injection at 8 GeV.

There are many way to cure longitudinal coupled bunch instability. The driving

resonances are often the higher order modes inside the rf cavities. When the particular

resonance is identified and if it is much narrower than the revolution frequency of the ring,

we can try to shift its frequency so that it resides in between two revolution harmonics

and becomes invisible to the beam particles. We can also study the electromagnetic

field pattern of this resonance mode inside the cavity and install passive resistors and

antennae to damp this particular mode. This method has been used widely in the

Fermilab Booster, where longitudinal coupled-bunch instability had been very severe

after the beam passed the transition energy. At that time, the bunch area increased

almost linearly with bunch intensity. Passive damping of several offending modes cured

this instability to such a point that the bunch area does not increase with bunch intensity

anymore.

Longitudinal coupled-bunch instability had also been observed in the former Fer-

milab Main Ring. Besides passive damping of the cavity resonant modes, the instability

was also reduced by lowering the rf voltage. Lowering the rf voltage will lengthen the

bunch and reduce the form factor F . This is only possible for a proton machine where
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Figure 8.9: Mountain range plot showing bunches in a batch executing coupled-
bunch instability in the Fermilab Main Injector just after injection at 8 GeV

the bunches are long. It will not work for the short electron bunches for the m = 1

dipole mode. This is because, as mentioned before, the form factor for the dipole mode

is not sensitive to the bunch length for short bunches. Even for a proton machine, the rf

voltage cannot be reduced by a large amount because proton bunches are usually rather

tight inside the rf bucket, especially during ramping.

If the growth turns out to be harmful, a fast bunch-by-bunch damper may be

necessary to damp the dipole mode (m = 1). A damper for the quadrupole mode

(m = 2) may also be necessary. This consists essentially of a wall-gap pickup monitoring

the changes in bunch length and the corresponding excitation of a modulation of the

rf waveform with roughly twice the synchrotron frequency. A feed-back correction is

then made to the rf voltage. Another way to damp the longitudinal coupled-bunch

instability is to break the symmetry between the M bunches. For example, a 5% to

10% variation in the intensity of the bunches will help. Also the bunches are usually
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not placed symmetrically in the ring. Some analysis shows that the stability will be

improved if some bunches in the symmetric configuration are missing.

There can also be Landau damping, which comes from the spread of the synchrotron

frequency. The spread due to the nonlinear sinusoidal rf wave form as given by Eq. (8.37

is usually small unless the synchronous angle is large. Electron bunches are usually much

smaller in size than the rf bucket. As a result the spread in synchrotron frequency will

be very minimal, and does not help much in Landau damping.

8.3.1 HIGHER-HARMONIC CAVITIES

In order to Landau damp longitudinal coupled-bunch instability, a large spread in

synchrotron frequency inside the bunch is required. One way to do this is to install a

higher-harmonic cavity, sometime known as Landau cavity [3]. For example, the higher-

harmonic cavity has resonant frequency mωrf , where ωrf is the resonant frequency of the

fundamental rf cavity. The total rf voltage seen by the beam particles becomes

V (τ ) = Vrf

[
sin(φs − ωrfτ )− r sin(φm −mωrfτ )

]
− Us

e
, (8.58)

where the phase angle φs is to compensate for the Us, the radiation energy loss or

any required acceleration. We would like the bottom of the potential well, which is

the integral of V (τ ), to be as flat as possible. The rf voltage seen by the synchronous

particle is compensated to zero by the energy lost to synchrotron radiation. In addition,

we further require
∂V

∂τ

∣∣∣∣
τ=0

= 0 , and
∂2V

∂τ 2

∣∣∣∣
τ=0

= 0 , (8.59)

so that the potential will become quartic instead. We therefore have 3 equations in 3

unknowns: 
sinφs = r sinφm +

Us
eVrf

,

cosφs = rm cosφm ,

sinφs = rm2 sin φm ,

(8.60)

from which φm and k can be solved easily (Exercise 8.4). For small amplitude oscillation,

the potential becomes

−
∫
V (τ )d(ωrfτ ) −→ m2−1

24
(ωrfτ )4Vrf cosφs , (8.61)
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which is quartic and the synchrotron frequency is (Exercise 8.5)

ωs(τ )

ωs0
=
π

2

(
m2−1

6

)1/2
ωrfτ

K(1/
√

2)


1−

(
m2

m2 − 1

Us
eVrf

)2

1−
(
Us
eVrf

)2


1/4

, (8.62)

where the last factor can usually be neglected; its deviates from unity by only ∼
[(m2−1)Us/(2eVrf)]2 if the synchronous angle is small. In above, ωs0 is the synchrotron

frequency at zero amplitude when the higher-harmonic cavity voltage is turned off, and

K(1/
√

2) = 1.854 is the complete elliptic integral of the first kind which is defined as

K(t) =

∫ π/2

0

dθ√
1− t2 sin2 θ

. (8.63)

We see that the synchrotron frequency is zero at zero amplitude and increases linearly

with amplitude. This large spread in synchrotron frequency may be able to supply ample

Landau damping to the longitudinal coupled-bunch instability.

In the situation where there is no radiation loss and no acceleration, Us = 0, the

solution of Eq. (8.60)simplifies, giving φs = φm = 0 and the ratio of the voltages of

higher-harmonic cavity to the fundamental r = 1/m. Of course, it is also possible

to have r 6= 1/m. Then the synchrotron frequency at the zero amplitude will not be

zero and the spread in synchrotron frequency can still be appreciable. When m = 2,

i.e., having a second harmonic cavity, the mathematics simplifies. The synchrotron

frequencies for various values of r are plotted in Fig. 8.10. Here, r = 0 implies having

only the fundamental rf while r = 1
2

the situation of having the synchrotron frequency

linear in amplitude for small amplitudes. In between, the synchrotron frequency spread

decreases as r decreases. Notice that for 0.3 <∼ r < 0.5, the synchrotron frequency has a

maximum near the rf phase of ∼ 100◦. Particles near there will have no Landau damping

at all and experience instability. Thus the size of the bunch is limited when a double

cavity is used. Also the size of the bunch cannot be too small because of two reasons:

first, the average synchrotron frequency may have been too low, and second, the central

region of the phase space is a sea of chaos [5].

A Landau cavity increases the spread in synchrotron frequency, therefore it is ideal

in damping mode-mixing instability and coupled-bunch instability. However, it may be

not helpful for the Keil-Schnell type longitudinal microwave instability. This method

was first applied successfully with a third harmonic cavity to increase Landau damping
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Figure 8.10: The normalized synchrotron tune of a double rf system as a function
of the peak rf phase φ for various voltage ratio r. Here, the higher-harmonic cavity
has frequency twice that of the fundamental. When r > 1

2 , the center of the bucket
becomes an unstable fixed point and two stable fixed points emerge [5].

at the Cambridge Electron Accelerator (CEA) [6]. It was later applied at the ISR with

a 6th harmonic cavity to cure mode-mixing instability [7]. Recently, a third-harmonic

cavity has been reported in the SOLEIL ring in France to give a relative frequency spread

of about 200%. However, since the center frequency has been dramatically decreased

(not exactly to zero), the net result is a poor improvement in the stabilization. The gain

in the stability threshold has been only 30% [4].

Actually, with a higher-harmonic cavity, the bunch becomes more rectangular-like

in the longitudinal phase space, or particles are not so concentrated at the center of the

bunch. Assuming the bunch area to be the same, the Boussard-modified Keil-Schnell

threshold is proportional to the energy spread. Since the bunch becomes more flattened,

the maximum energy spread which is at the center of the bunch is actually reduced, and

so will be the instability threshold. However, spreading out the particles longitudinally

does help to increase the bunching factor and decrease the incoherent self-field or space-

charge tune shift. At the Proton Synchrotron Booster at CERN, a rf system with higher

harmonics 5 to 10 has raised the beam intensity by about 25 to 30% [8]. For the Cooler

Ring at the Indiana University Cyclotron Facility, a double cavity has been able to
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quadruple the beam intensity [5].

8.3.2 PASSIVE LANDAU CAVITY

Higher-harmonic cavities are useful in producing a large spread in synchrotron fre-

quency so that single-bunch mode-mixing instability and coupled-bunch instability can

be damped. However, the power source to drive this higher-harmonic rf system can

be rather costly. One way to overcome this is to do away with the power source and

let the higher-harmonic cavity or cavities be driven by the beam-loading voltage of the

circulating beam.

For a cavity with a high quality factor, the beam loading voltage is just the ib, the

current component at the cavity resonant frequency, multiplied by the impedance of the

cavity. Here, for a Gaussian bunch

ib = 2I0e
−1

2
(mhω0στ)2

, (8.64)

where στ is the rms bunch length and ω0/(2π) is the revolution harmonic. The ratio of

the resonant frequencies of the higher-harmonic cavity to the fundamental rf cavity is

m and h is the fundamental rf harmonic. Thus for a short bunch, ib ≈ 2I0 with I0 being

the average current of the bunch.

The higher-harmonic cavity must have suitable shunt impedance Rs and quality

factor Q, and this can be accomplished by installing necessary resistor across the cavity

gap. Thus, Rs and Q can be referred to as the loaded quantities of the cavity. For a

particle arriving at time τ ahead of the synchronous particle, it sees the total voltage

V (τ ) = Vrf sin(φs − ωrfτ )− ibRsRe
[

1

1 + i2Qδ
eimωrfτ

]
− Us

e
, (8.65)

where ωrf = hω0 is the angular rf frequency determined by the resonator in the rf klystron

that drives the fundamental rf cavity and the negative sign in front of ib indicates that

this beam loading voltage is induced by the image current and opposes the beam current.

In above,

δ =
1

2

(
ωr
mωrf

− mωrf

ωr

)
≈ ωr −mωrf

ωr
(8.66)

represents the deviation of the resonant angular frequency ωr of the higher-harmonic

cavity from the mth multiple of the rf angular frequency. Of course, this is related to
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the detuning angle ψ of the higher-harmonic cavity, which we introduce in the usual way

as

tanψ = 2Qδ . (8.67)

Now, Eq. (8.65) can be rewritten as

V (τ ) = Vrf sin(φs − ωrfτ )− ibRs cosψ cos(ψ −mωrfτ )− Us
e
. (8.68)

Again to acquire the largest spread in synchrotron frequency, we require

V (0) = 0 , V ′(0) = 0 , V
′′
(0) = 0 , (8.69)

so that the potential for small amplitudes becomes quartic,

U(τ ) = −
∫
V (τ )dτ = −τ

4

4!
V
′′′

(0) . (8.70)

Since we are having exactly the same quartic potential as in an rf system with an active

Landau cavity, we expect the synchrotron frequency to be exactly the same as the

expression given by Eq. (8.62) when the oscillation amplitude is small.

The set of requirements, however, are different from that of the active Landau cavity

system. Here, the requirements are

Vrf sinφs = ibRs cos2 ψ + Us/e , (8.71)

Vrf cosφs = −mibRs cosψ sinψ , (8.72)

Vrf sinφs = m2ibRs cos2 ψ . (8.73)

For an electron machine which is mostly above transition, the synchronous angle φs is

between 1
2
π and π. Thus, from Eq. (8.72), we immediately obtain

sin 2ψ > 0 =⇒ 0 < ψ <
π

2
, (8.74)

and from Eqs. (8.66) and (8.67), ωr > mωrf . This means that the beam in the higher-

harmonic cavity is Robinson unstable [4], as is illustrated in Fig. 8.11. Of course, the

fundamental rf cavity should be Robinson stable, and it will be nice if the detuning is

so chosen that the beam remains stable after traversing both cavities.

The synchrotron light source electron ring at LNLS, Brazil would like to install

a passive Landau cavity with m = 3 in order to alleviate the longitudinal coupled-

bunch instabilities. The fundamental rf system has harmonic h = 148 or rf frequency
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Figure 8.11: For the higher-harmonic cavity, the resonant frequency ωr is above
the mth multiple of the rf frequency. The beam will be Robinson unstable above
transition. For the fundamental cavity, the resonant frequency ωr0 is below the rf
frequency ωrf = hω0, and the beam will be Robinson stable. The detuning of the
fundamental rf should be so chosen that the beam will be stable after traversing
both cavities.

frf = ωrf/(2π) = 476.0 MHz with a tuning range of ±10 kHz, and rf voltage Vrf = 350 kV.

To overcome the radiation loss, the synchronous phase is set at φs0 = 180◦− 19.0◦. This

gives a synchrotron tune at small amplitudes νs = 6.87×10−3 or a synchronous frequency

fs = 22.1 kHz.

With the installation of the passive Landau cavity, the synchronous phase must be

modified to a new φs, which is obtained by solving Eqs. (8.71) and (8.73):

sinφs =

(
m2

m2−1

)(
Us
eVrf

)
=

m2

m2−1
sinφs0 . (8.75)

Thus,

φs0 = 180◦ − 19.0◦ =⇒ φs = 180◦ − 21.49◦ , (8.76)

where m = 3 has been used. The detuning ψ of the higher-harmonic cavity can be
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obtained from Eqs. (8.72) and (8.73), or

tanψ = −m cotφs =⇒ ψ = 82.53◦ . (8.77)

Finally from Eq. (8.73),

ibRs =
Vrf sinφs
m2 cos2 ψ

. (8.78)

With ib = 2I0 = 0.300 A and Vrf = 350 kV, we obtain the shunt impedance of the

higher-harmonic cavity to be Rs = 2.81 MΩ. The power taken out from the beam is

P =
1

2

i2bRs

1 + tan2 ψ
= 2.14 kw , (8.79)

which is not large when compared with the power loss due to radiation

Prad = NUsf0 = I0Vrf sin φs0 = 17.09 kw , (8.80)

where N is the number of electrons in the bunch. The higher-harmonic cavity has a

quality factor of Q = 45000 and a resonant frequency fr ∼ 3fr0 = 1428 MHz. From the

detuning, it can easily found that the frequency offset is fr − 3frf = 121 kHz.

Now let us compute the growth rate for one bunch at the coherent frequency Ω.

For one particle of time advance τ , we have from Sacherer integral equation for a short

bunch [2],

Ω2 − ωs(τ )2 =
iηeI0

E0T0

∑
q

(qω0 + Ω)Z‖0 (qω0 + Ω) . (8.81)

where η is the slip factor and we have retained the dependency of the synchrotron

frequency ωs on τ because of its large spread in the presence of the higher-harmonic

cavity. From Eq. (8.62), this dependency is

ωs(τ )

ωs0
=
π

2

(
m2−1

6

)1/2
ωrfτ

K(1/
√

2)

√
cosφs
cosφs0


1−

(
m2

m2−1

Us
eVrf

)2

1−
(
Us
eVrf

)2


1/4

, (8.82)

where the last factor amounts to 0.9920 and can therefore be safely abandoned. Thus,

the average ω2
s over the whole bunch just gives the square of the rms frequency spread,

〈ω2
s〉 = σ2

ωs =

[
πωs0

2

√
m2−1

6

ωrfστ

K(1/
√

2)

]2

. (8.83)
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The FWHM natural bunch length at Vrf = 350 kV is 70.6 ps; thus στ = 30.0 ps. This

gives σωs = 12.2 kHz.

Since the synchrotron frequency is now a function of the offset from the stable fixed

point of the rf bucket, a dispersion relation can be obtained from Eq. (8.81) by integrating

over the synchrotron frequency distribution of the bunch. Here, we are interested in the

growth rate without damping, which is given approximately by

1

τ
= ImΩ ≈ ηeI0ωrf

2E0T0(2σωs)

{[
ReZ‖0 (ωrf + 2σωs)−ReZ

‖
0 (ωrf − 2σωs)

]
+m

[
ReZ‖0(mωrf + 2σωs)−ReZ

‖
0 (mωrf − 2σωs)

]}
, (8.84)

where the mean angular synchrotron frequency has been assumed to be

ω̄s = 2σωs . (8.85)

This can be computed easily by substituting into the expression for ReZ. However,

the differences in Eq. (8.84) can also be approximated by derivatives. For the higher-

harmonic cavity, both the upper and lower synchrotron side-bands lie on the same

side of the higher-harmonic resonance as indicated in Fig. 8.11. Also their difference,

4σω/(2π) = 7.76 kHz is very much less than the cavity detuning (ωr − mωrf)/(2π) =

121 kHz. Recalling that

ReZ(ω) = Rs cos2 ψ , (8.86)

where the detuning ψ is given by Eq. (8.67), the second term can be written as a

differential,

ReZ‖0(mωrf + 2σωs)−ReZ
‖
0 (mωrf − 2σωs) ≈

[
Rs cos2 ψ sin 2ψ

2Q

ωr

]
4σωs . (8.87)

For the fundamental cavity, the detuning is usually ∆ = −10 kHz at injection and

is reduced to ∆ = −2 kHz in storage mode when the highest electron energy is reached.

Thus, the upper and lower synchrotron side-bands lie on either side of the resonance as

illustrated in Fig. 8.11. Since ∆� σωs , we can also write the first term of Eq. (8.84) as

a differential about (2σωs). Thus,

ReZ‖0 (ωrf +2σωs)−ReZ
‖
0 (ωrf−2σωs)

= ReZ‖0 (ωr0+∆+2σωs)−ReZ
‖
0(ωr0−∆+2σωs) ≈

[
Rs cos2 ψωs sin 2ψωs

2Q

ωr0

]
2∆ , (8.88)
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where ωr0/(2π) = 476.00 MHz is the resonance frequency of the fundamental cavity and

ψωs, which is similar to a detuning angle, is defined as

tanψωs = 2Q
2σωs
ωr0

. (8.89)

We arrive at

1

τ
=

2ηeI0Q

E0T0

[
2∆

2σωs
Rs cos2 ψωs sin 2ψωs

∣∣
fundamental

+ Rs cos2 ψ sin 2ψ
∣∣
higher harmonic

]
.

(8.90)

The square bracketed factor in Eq. (8.90) becomes[
2∆

2σωs
Rs cos2 ψ sin 2ψ

∣∣
fundamental

+ Rs cos2 ψ sin 2ψ
∣∣
higher

]
= (−0.0059 + 0.0122) MΩ ,

(8.91)

where we have used for the fundamental cavity, the shunt impedance Rs = 3.84 MΩ,

and quality factor Q = 45000. The growth rate is 1680 s−1 or a growth time of 0.596 ms,

which is very fast. Note that the assumption of the mean synchrotron angular frequency

in Eq. (8.85) is not sensitive to the higher-harmonic-cavity term in Eq. (8.84) but is

rather sensitive to the fundamental-cavity term. For example, if we use ω̄s = 2.5σωs , the

growth time decreases to 0.389 ms, while ω̄s = 1.5σωs makes the system Robinson stable.

With this uncertainty, it may be better to increase the detuning ∆ of the fundamental.

Now let us estimate how large a Landau damping we obtain from the passive Landau

cavity coming from the spread of the synchrotron frequency. Following Eq. (8.38), the

stability criterion is roughly
1

τ
<∼
ωs(
√

6στ)

4
, (8.92)

where the synchrotron angular frequency spread is given by Eq. (8.62). The spread in

synchrotron angular frequency has been found to be ωs(
√

6στ) = 39.6 kHz. In other

words, the higher-harmonic cavity is able to damp an instability that has a growth time

longer than 0.101 ms, an improvement of 57 folds better than when the higher-harmonic

cavity is absent. Thus, theoretically, this Landau damping is large enough to alleviate

the Robinson antidamping of higher-harmonic cavity.

We notice that the required shunt impedance of the passive Landau cavity Rs =

2.81 MΩ is large, although it is still smaller than the shunt impedance of 3.84 MΩ of the

fundamental cavity. It is easy to understand why such large impedance is required. The

synchronous angle for a storage ring without the Landau cavity is usually just not too
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much from 180◦, here φs0 = 180◦−19.0◦, because of the compensation of a small amount

of radiation loss. The rf gap voltage phasor is therefore almost perpendicular to the beam

current phasor. In order that the beam-loading voltage contributes significantly to the rf

voltage, the detuning angle of the passive higher-harmonic cavity must therefore be large

also, here ψ = 82.53◦. In fact, without radiation loss to compensate, the beam-loading

voltage phasor would have been exactly perpendicular to the beam current phasor. Since

cosψ = 0.130 is small, the shunt impedance of the higher-harmonic cavity must therefore

be large. In some sense, the employment of the higher-harmonic cavity is not efficient

at all, because we are using only the tail of a large resonance impedance, as is depicted

in Fig. 8.11. This is not a waste at all, however, because we can do away with the

generating source for this cavity. Also, the large detuning angle implies not much power

will be taken out from the beam as it loads the cavity, only 2.14 kw here. On the other

hand, the detuning of the fundamental cavity need not be too large. This is because

the rf gap voltage is supplied mostly by the generator voltage and only partially by the

beam loading in the cavity.

The most important question here is how do we generate a large shunt impedance

for the higher-harmonic cavity. Usually it is easy to lower the shunt impedance by adding

a resistor across the cavity gap. Some other means will be required to raise the shunt

impedance, in case it is not large enough. One way is to coat the interior of the higher-

harmonic cavity with a layer of medium that has a higher conductivity. However, it is

hard to think of any medium that has a conductivity very much higher than the copper

surface of the cavity. For example, the conductivity of silver is only slightly higher.

Another way to increase the conductivity significantly is the reduction of temperature

to the cryogenic region. Notice that Rs/Q is a geometric property of the cavity. Raising

Rs will raise Q also. However, a higher quality factor is of no concern here, because the

requirements in Eqs. (8.71), (8.72), and (8.73) depend on the detuning ψ only and are

independent of Q. With the same detuning ψ, a higherQ just implies a smaller frequency

offset between the resonant angular frequency ωr of the higher-harmonic cavity and the

mth multiple of the rf angular frequency.

Another way to achieve a lower shunt impedance requirement is to reduce the rf

voltage. We can rewrite Eq. (8.78) as

ibRs =
Us
e

[(
m2 − 1

m2

)2 (
eVrf

Us

)2

− m2 − 1

m2

]
, (8.93)

after eliminating φs and ψ with the aid of Eqs. (8.75) and (8.77). Thus, for a given beam
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current, lowering Vrf will result in a smaller shunt impedance. Notice that the right side

is quadratic in Vrf , a higher Vrf will increase the required shunt impedance by very much.

For example, with the same radiation loss, increasing Vrf from 350 kV to 500 kV will

increase the required shunt impedance of the higher-order cavity from 2.61 to 6.12 MΩ.

However, lowering Vrf by too much is usually not favored because the electron bunches

will become too long.

There is a big difference between an active Landau cavity and a passive Landau

cavity. In an active Landau cavity, the criteria of Eq. (8.60) are independent of the

beam intensity. On the other hand, the criteria for the operation of a passive cavity,

Eqs. (8.71), (8.72), and (8.73), depend on the bunch intensity. What will happen when

the bunch intensity changes significantly? Let us recall how we arrive at the solution of

the 3 equations of the passive two-rf system. The new synchronous phase φs, as given

by Eq. (8.75), is determined solely by the ratio of the radiation loss Us to the rf voltage

Vrf . while the detuning ψ is just given by −m cotφs. The only parameter that depends

on the beam current is the shunt impedance Rs. Therefore, if the bunch intensity is

different, one can adjust the rf voltage so that Eq. (8.93) remains satisfied with the new

current but with the preset Rs. With the new rf voltage, the synchronous phase φs has

to be adjusted so that Eq. (8.75) remains satisfied. It will be best if the detuning ψ can

be also adjusted according to Eq. (8.77). Unfortunately, this is not possible, because a

change in ψ is equivalent to a change in the resonant frequency of the cavity. In other

words, unless the intensity of the bunch is carefully controlled to meet the designed

requirement, most of the time, a synchrotron frequency given by Eq. (8.62) cannot be

realized. As is shown in Fig. 8.10 for a m = 2 double rf system, when the rf voltage ratio

deviates from r = 1/m = 0.5 by 20% to 0.4, the spread in synchrotron frequency for

a small bunch decreases tremendously to almost the same tiny value as in the single rf

system. For this reason, in order for a passive Landau cavity to work, the bunch intensity

must be kept relatively constant from cycle to cycle, with a difference not exceeding a

couple of percents.

8.3.3 RF VOLTAGE MODULATION

The modulation of the rf system will create nonlinear parametric resonances, which

redistribute particles in the longitudinal phase plane. The formation of islands within an

rf bucket reduces the density in the bunch core. As a result, beam dynamics properties

related to the bunch density, such as beam life time, beam collective instabilities, etc,

can be improved.
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Here we try to modulate the rf voltage with a frequency νmω0/(2π) and amplitude

ε, so that the energy equation becomes [9]

d∆E

dn
= eVrf [1 + ε sin(2πνmn+ ξ)][sin(φs − hω0τ )− sinφs]− [U(δ)− Us] , (8.94)

where ξ is a randomly chosen phase and νm the modulating tune. This modulation

will introduce resonant island structure in the longitudinal phase plane. There are two

critical tunes: {
ν1 = 2νs + 1

2
ενs ,

ν2 = 2νs − 1
2
ενs .

(8.95)

If we start the modulation by gradually increasing the modulating tune νm towards ν2

from below, two islands appear inside the bucket from both sides, as shown in the second

plot of Fig. 8.12. The phase space showing the islands is depicted in Fig. 8.13. As νm is

increased, these two islands come closer and closer to the center of the bucket and the

particles in the bunch core gradually spill into these two islands, forming 3 beamlets.

When νm reaches ν2, the central core disappears and all the particles are shared by the

two beamlets in the two islands. Further increase of νm above ν2 moves the two beamlets

closer together. When νm equals ν1, the two beamlets merge into one. Under all these

situations, the two outer islands rotate around the center of the rf bucket with frequency

equal to one half the modulation frequency.

Rf voltage modulation has been introduced into the light source SRRC at Taiwan to

cope with longitudinal coupled-bunch instability [10]. A modulation frequency slightly

below twice the synchrotron frequency with 10% voltage modulation was applied to the

rf system. The beam spectrum measured from the BPM sum from a HP4396A network

analyzer before and after the modulation is shown in Fig. 8.14. It is evident that the

intensity of the beam spectrum has been largely reduced after the application of the

modulation. The sidebands around the harmonics of 587.106 Hz and 911.888 MHz are

magnified in Fig. 8.15. We see that the synchrotron sidebands have been suppressed by

very much. The multibunch beam motion under rf voltage modulation was also recorded

by streak camera, which did not reveal any coupled motion of the bunches.
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Figure 8.12: (Color) Simulation results of rf voltage modulation. The modula-
tion frequency is increased from top to bottom and left to right. The modulation
amplitude is 10% of the cavity voltage. The 4th plot is right at critical frequency
ν2f0 = 49.6275 kHz and the 7th plot right at critical frequency ν1f0 = 52.1725 kHz.
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Figure 8.13: Top figures show separatrices and tori of the time-independent Hamil-
tonian with voltage modulation in multiparticle simulation for an experiment at
IUCF. The modulation tune is below ν2 with the formation of 3 islands on the
left, while the modulation tune is above ν2 with the formation of 2 islands on the
right. The lower-left plot shows the final beam distribution when there are 3 is-
lands, a damping rate of 2.5 s−1 has been assumed. The lower-right plot shows
the longitudinal beam distribution from a BPM sum signal accumulated over many
synchrotron periods. Note that the outer two beamlets rotate around the center
beamlet at frequency equal to one-half the modulation frequency.
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Figure 8.14: (Color) Beam spectrum from BPM sum signal before and after ap-
plying rf voltage modulation. The modulation frequency was 50.155 kHz and the
voltage modulation was 10%. The frequency span of the spectrum is 500 MHz.

Figure 8.15: (Color) Beam spectrum zoom in from Fig. 8.14. The revolution har-
monic frequency of the left is 587.106 MHz and the right is 911.888 MHz. The
frequency span of the spectrum is 200 kHz.



8-34 CHAPTER 8. LONGITUDINAL COUPLED-BUNCH INSTABILITIES

8.4 EXERCISES

8.1. Above/below transition, with the angular resonant frequency ωr offset by ∆ω =

±(ωr−hω0) where ωrf = hω0 is the angular rf frequency, the bunch suffers Robin-

son’s instability.

(1) Assuming that ωs � |∆ω| � ωrf and using the expression for resonant im-

pedance in Eq. (1.34), show that the Robinson growth rate in Eq. (8.34) can be

written as
1

τ
=

2e2NRs

E0T 2
0

cos2 ψ sin 2ψ , (8.96)

where N is the number of particles in the bunch, E0 is the synchronous energy E0,

T0 = 2π/ω0 is the revolution period, and the detuning angle ψ is defined as

tanψ = 2Q
ωr − ωrf

2ωr

for the resonant impedance with shunt impedance Rs, resonant frequency ωr/(2π),

and quality factor Q.

(2) Assuming further that |∆ω| is much less than the resonator width ωr/(2Q)

which, in turn, is much less than ω0, show that the Robinson growth rate can be

written as
1

τ
=

4e2NRsQ2η∆ω

πβ2E0hT0
. (8.97)

(c) Robinson’s instability is usually more pronounced in electron than proton

machines because high shunt impedance and quality factor are often required in

the rf system. Take for example a ring of circumference 180 m with slip factor

|η| = 0.03. To store a typical bunch with 1 × 1011 electrons at E0 = 1 GeV, one

may need a rf system with h = 240, Rs = 1.0 MΩ, and Q = 2000. On the other

hand, to store a bunch of 1×1011 protons at kinetic energy E0 = 1 GeV in the same

ring, one may need a rf system with h = 4, Rs = 0.12 MΩ, and Q = 45. Compare

the Robinson growth rates for the two situations when the resonant frequencies

are offset in the wrong directions by |∆ω| = ωs. Assume the synchrotron tune to

be 0.01 in both cases.

8.2. Using the definition of the form factor in Eq. (8.53), compute numerically the form

factor when the unperturbed distribution is bi-Gaussian. The half bunch length

can be taken as τ̂ =
√

6στ , where στ is the rms bunch length.
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8.3. Consider a single sinusoidal rf system operating at synchronous angle φs = 0.

(1) Show that the synchrotron frequency of a particle at rf phase φ is given by

fs(φ)

fs0
=

π

2K(t)
, (8.98)

where t = sinφ/2, fs0 is the synchrotron frequency at zero amplitude, and K(t) is

the complete elliptic integral of the first kind defined in Eq. (8.63).

(2) Show that Eq. (8.98) is consistent with Eq. (8.37) at small amplitude.

8.4. Solve the set of equations in Eq. (8.60) to obtain the fundamental rf phase φs, the

higher-harmonic rf phase φm and the voltage ratio r in terms of the harmonic ratio

m and Us/eVrf .

Answer:

sinφs=
m2

m2−1

Us
eVrf

, tan φm=

m

m2−1

Us
eVrf√

1−
(

m2

m2−1

Us
eVrf

)2
, r=

√
1

m2
− 1

m2−1

U2
s

(eVrf)
2 .

8.5. Derive the small amplitude synchrotron frequency as given by Eq. (8.62).
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